Transistor Biasing

Transistors are the most important semiconductor active devices essential for almost all circuits. They are used as electronic switches, amplifiers etc in circuits. Transistors may be NPN, PNP, FET, JFET etc which have different functions in electronic circuits. For the proper working of the circuit, it is necessary to bias the transistor using resistor networks. Operating point is the point on the output characteristics that shows the Collector-Emitter voltage and the Collector current with no input signal. The Operating point is also known as the Bias point or Q-Point (Quiescent point).
Biasing is referred to provide resistors, capacitors or supply voltage etc to provide proper operating characteristics of the transistors. DC biasing is used to obtain DC collector current at a particular collector voltage. The value of this voltage and current are expressed in terms of the Q-Point. In a transistor amplifier configuration, the IC ( max) is the maximum current that can flow through the transistor and VCE(max) is the maximum voltage applied across the device. To work the transistor as an amplifier, a load resistor RC must be connected to the collector. Biasing set the DC operating voltage and current to the correct level so that the AC input signal can be properly amplified by the transistor. The correct biasing point is somewhere between the fully On or fully Off states of the transistor. This central point is the Q-Point and if the transistor is properly biased, the Q-point will be the central operating point of the transistor. This helps the output current to increase and decrease as the input signal swings through the complete cycle.
For setting the correct Q-Point of the transistor, a collector resistor is used to set the collector current to a constant and steady value without any signal in its base. This steady DC operating point is set by the value of the supply voltage and the value of the base biasing resistor. Base bias resistors are used in all the three transistor configurations like common base, common collector and Common emitter configurations.

Modes of biasing:

Following are the different modes of transistor base biasing:

1. Current biasing:

As shown in the Fig.1, two resistors RC and RB are used to set the base bias. These resistors establish the initial operating region of the transistor with a fixed current bias. The transistor forward biases with a positive base bias voltage through RB.  The forward base-Emitter voltage drop is 0.7 volts.
Therefore the current through RB is IB = (Vcc – VBE ) / IB

2. Feedback biasing:

Fig.2 shows the transistor biasing by the use of a feedback resistor. The base bias is obtained from the collector voltage. The collector feedback ensures that the transistor is always biased in the active region. When the collector current increases, the voltage at the collector drops. This reduces the base drive which in turn reduces the collector current. This feedback configuration is ideal for transistor amplifier designs.

3. Double Feedback Biasing:

Fig.3 shows how the biasing is achieved using double feedback resistors.
By using two resistors RB1 and RB2 increases the stability with respect to the variations in Beta by increasing the current flow through the base bias resistors. In this configuration, the current in RB1 is equal to 10 % of the collector current.

4. Voltage Dividing Biasing:

Fig.4 shows the Voltage divider biasing in which two resistors RB1 and RB2 are connected to the base of the transistor forming a voltage divider network. The transistor gets biases by the voltage drop across RB2. This kind of biasing configuration is used widely in amplifier circuits.

5. Double Base Biasing:

Fig.5 shows a double feedback for stabilization. It uses both Emitter and Collector base feedback to improve the stabilization through controlling the collector current. Resistor values should be selected so as to set the voltage drop across the Emitter resistor 10% of the supply voltage and the current through RB1, 10% of the collector current.

0 comments